

Institute for IIT-JAM I CSIR-NET/JRF I U-SET I GATE I JEST I TIFR I BARC

Dedicated to excellence...

JEST (MATHEMATICAL PHYSICS)

PREVIOUS YEAR'S QUESTIONS WITH ANSWER (CHAPTER-WISE)

- MATRIX ALGEBRA
- **VECTOR ANALYSIS**
- FOURIER SERIES, FOURIER & LAPLACE TRANSFROMATION
- **COMPLEX ANALYSIS**
- **DIFFERENTIAL EQUATION**
- **OTHER QUESTIONS**

"We Believe In Quality Education"

MATRICS ALGEBRA

1.	For an $N \times N$ matrix consisting of all ones,[JEST-2012](a) All eigenvalues = 1(b) All eigenvalues = 0(c) The eigenvalues are 1,2,N(d) One eigenvalue = N, the others = 0							
2.	Given a matrix $M = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, which of the following represents $\cos\left(\frac{\pi M}{6}\right)$.							
	(a) $\frac{1}{2} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ (b) $\frac{\sqrt{3}}{4} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix}$	$(c) \frac{\sqrt{3}}{4} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$	$(d) \frac{1}{2} \begin{pmatrix} 1 & \sqrt{3} \\ \sqrt{3} & 1 \end{pmatrix}$					
3.	Let $\Lambda = \begin{pmatrix} 1 & 0 \\ 0 & 11 \end{pmatrix}$ and $M = \begin{pmatrix} 10 & 3i \\ -3i & 2 \end{pmatrix}$. Sin performed by.	nilarity, transformat	ion of <i>M</i> to Λ can be [JEST 2017]					
	(a) $\frac{1}{\sqrt{10}} \begin{pmatrix} 1 & 3i \\ 3i & 1 \end{pmatrix}$ (c) $\frac{1}{\sqrt{10}} \begin{pmatrix} 1 & 3i \\ -3i & 11 \end{pmatrix}$	(b) $\frac{1}{\sqrt{9}} \begin{pmatrix} 1 & -3i \\ 3i & 11 \\ (d) \frac{1}{\sqrt{9}} \begin{pmatrix} 1 & -3i \\ -3i & 12 \end{pmatrix}$)					
4.	If $\rho = \frac{\left[l + \frac{1}{\sqrt{3}}(\sigma_x + \sigma_y + \sigma_z)\right]}{2}$, where σ 's are the matrix, then the trace of ρ^{2017} is.	Pauli matrices and	<i>I</i> is the identity [JEST 2017]					
	(a) 2^{2017} (b) 2^{-2017}	(c) 1	(d) $\frac{1}{2}$					
5.	Two of the eigenvalues of the matrix $A = \begin{pmatrix} a & 3 & 0 \\ 3 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ are 1 and -1. What is the							
	third eigenvalue?		[JEST-2018]					
	(a) 2 (b) 5	(c) -2	(d) -5					
6.	Consider two $n \times n$ matrices, A and B such that $A + B$ is invertible. Define two Matrices, $C = A(A+B)^{-1}B$ and $D = B(A+B)^{-1}A$. Which of the following relations always hold true? [JEST-2019]							
	(a) $C = D$ (c) BCA = ADB	(b) $C \neq D$ (d) $C \neq D$						
7.	Let A be a hermitian matrix, and C and D the following matrices is unitary? (a) $C^{-1}AC$ (b) $C^{-1}DC$	(c) C ⁻¹ AD	rices. Which one of [JEST-2019] (d) A ⁻¹ CD					
	14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919870827730 website:- www. www.careerspectra.in							

Page | 2

	Career Spectra							
8.	Consider a 2x2 matrix $A = \begin{pmatrix} 1 \\ 0 \\ \end{pmatrix}$ (a) $\begin{pmatrix} 1 & 13 \\ 0 & 1 \end{pmatrix}$ (b) $\begin{pmatrix} 1 & 1 \\ 0 \end{pmatrix}$	$ \begin{array}{c} 13\\1\\3^{27}\\1 \end{array} \text{ (c) } \begin{pmatrix} 1 & 27\\0 & 1 \end{pmatrix} $	$\begin{bmatrix} \textbf{JEST-2019} \end{bmatrix}$ (d) $ \begin{pmatrix} 1 & 351 \\ 0 & 1 \end{pmatrix} $					
VE	CTOR ANALYSIS							
9.	If the distribution function of x is mean value of x is.	is $f(x) = xe^{-x/\lambda}$ over the in	terval $0 < x < \infty$, the [JEST-2013]					
	(a) λ (b) 2 λ	(c) $\frac{\lambda}{2}$	(d) 0					
10.	What is the equation of the plane which is tangent to the surface $xyz = 4$ at the point (1,2,2)? [JEST-2017]							
	(a) $x + 2y + 4z = 12$	(b) $4x + 2y + z =$	12					
	(c) $x + 4y + z = 0$	(d) $2x + y + z = 6$	5					
11.	Let \vec{r} be the position vector of a	point on a closed contour C	. What is the value					
	of the line integral $\oint \vec{r} \cdot d\vec{r}$? (a) 0 (b) ¹ / ₂	(c) 1	[JEST-2019] (d) <i>π</i>					
12.	Which one of the following vect	tors lie along the line of inte	rsection of the two					
	planes x+3y-z=5 and 2x-2y+4z= (a) $10\hat{i} - 2\hat{j} + 5\hat{k}$	(b) $10\hat{i} - 6\hat{j} - 8$	[JEST-2019]					
	(c) $10\hat{i} + 2\hat{j} + 5\hat{k}$	(d) $10\hat{i} - 2\hat{j} - 5$	ĥ					
13.	What is the angle (in degrees) be at the Point (1, -1,1).	etween the surfaces $y^2 + z^2 =$	= 2 and $y^2 - x^2 + = 0$ [JEST-2019]					
FO	URIER SERIES, FOURIER	R & LAPLACE TRANS	SFROMATION					
14.	The Laplace transformation of e	e^{-2t} sin 4t is:	[JEST-2014]					
	(a) $\frac{4}{s^2+4s+25}$ (b) $\frac{4}{s^2+4s+20}$	(c) $\frac{4s}{s^2+4s+20}$	(d) $\frac{4s}{2s^2+4s+20}$					
15.	The Dirac delta function $\delta(x)$ satisfies the relation $\int_{-\infty}^{\infty} f(x) \ \delta(x) dx = f(0)$ for a well behaved function $f(x)$. If x has the dimension of momentum then							
	(a) $\delta(x)$ has the dimension of momentum (b) $\delta(x)$ has the dimension of (momentum) ² (c) $\delta(x)$ is dimensionless							
	(d) $\delta(x)$ has the dimension of (momentum) ⁻¹							
14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919870827730 website:- www. www.careerspectra.in Page 3								

Carcer Spectre
16.
$$\int_{-\infty}^{+\infty} (x^2 + 1)\delta)(x^2 - 3x + 2)dx =? \qquad [JEST 2017]$$
(a) 1 (b) 2 (c) 5 (d) 7
17. The Fourier transform of the function $\frac{1}{x^{1+3}x^{2}+2}$ up to proportionality constant is:
[JEST 2017]
(a) $\sqrt{2} \exp(-k^2) - \exp(-2k^2)$
(b) $\sqrt{2} \exp(-|k|) - \exp(-\sqrt{2}|k|)$
(c) $\sqrt{2} \exp(-|k|) - \exp(-\sqrt{2}|k|)$
(d) $\sqrt{2} \exp(-\sqrt{2}k^2) - \exp(-2k^2)$
18. The function $f(x) = \cos hx$ which exists in the range $-\pi \le x \le \pi$ is periodically repeated between $x = (2m - 1)\pi$ and $(2m + 1)\pi$, where $m = -\infty$ to ∞ .
Fourier series, indicate the correct relation at $x = 0$.
Fourier series, indicate the correct relation at $x = 0$.
Fourier series, indicate the correct relation at $x = 0$.
Fourier series, $\frac{(-1)^n}{(1+n^2)} = \frac{1}{2} \left(\frac{\pi}{\cosh \pi} - 1 \right)$ (b) $\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{1+n^2} = \frac{2}{2} \frac{\pi}{\cosh \pi}$
(c) $\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{(1+n^2)} = \frac{1}{2} \left(\frac{\pi}{(\sinh \pi)} - 1 \right)$ (c) $\sum_{n=-\infty}^{\infty} \frac{(-1)^n}{1+n^2} = \frac{2}{2} \left(\frac{\pi}{\sinh \pi} - 1 \right)$
19. The Laplace transform of $\frac{(\sin(at)-at\cos(at))}{(2a^2)}$ is.
(a) $\frac{2as}{(s^2+a^2)^2}$ (b) $\frac{s^2-a^2}{(s^2+a^2)^2}$ (c) $\frac{1}{(s+a)^2}$ (d) $\frac{1}{(s^2+a^2)^2}$
20. $\pi \int_{-\infty}^{\infty} \exp(-|x|)\delta(\sin(\pi x))dx$, where $\delta(...)$ is Dirac distribution, is
(a) 1 (b) $\frac{e^{+1}}{2\pi}$ (c) $\frac{e^{-1}}{2\pi}$ (d) $\frac{1}{2}$
21. What is the value of the integral $\int_{-\infty}^{\infty} dx\delta(x^2 - \pi^2) \cos x$? [JEST-2019]
(a) π (b) $-\frac{1}{2\pi}$ (c) $-\frac{1}{2}$ (d) $\frac{\pi}{2}$
23. Compute log $z=0$ $\frac{Ra(z^2)+im(z^2)}{z^2}$. [JEST-2012]
(a) The limit does not exist (b) 1
(c) $-i$ (d) -1

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUNCONTACT:-+919045460409, +919870827730website:- www. www.careerspectra.in

			Caree	r Spectra					
24.	The value of	[JEST-2014]							
	(a) 1	(b) 0	(c) $\frac{-10}{3}$	(d) $\frac{5}{3}$					
25.	The value of	is [JEST-2014]							
	(a) 0	(b) $2\pi i$	(c) <i>πi</i>	(d) <i>πi</i>					
26.	Given an analytic function $f(z) = \phi(x, y) + i\psi(x, y)$, where $\phi(x, y) = x^2 + 4x - y^2 + 2y$. If <i>C</i> is a constant, which of the following relations is true?								
	(a) $\psi(x, y) = x^2y + 4y + C$ (b) $\psi(x, y) = 2xy - 2x + C$ (c) $\psi(x, y) = 2xy + 4y - 2x + C$ (d) $\psi(x, y) = x^2y - 2x + C$								
27.	Which one is mapping $f($	s the image of the compl z) = z^2 , if z = x+iy?	ex domain $\{z xy \ge 1$	x + y > 0 under the [JEST 2017]					
	(a) $\{z xy \ge$ (c) $\{z y \ge 2$	1, x + y > 0 $\forall x$	(b) $\{z x \ge 2, x + (d) \{z y \ge 1 \forall x\}$	y > 0					
28.	The integral	$\int_{-\infty}^{\infty} \frac{\cos x}{x^2 + 1} dx$ is.		[JEST-2018]					
	(a) $\frac{\pi}{e}$	(b) πe^{-2}	(c) π	(d) zero					
29.	Consider the function $f(x, y) = x - i y $. In which domain of the complex								
	(a) First and second quadrants (b) Second and third quadrants								
	(c) Second a	and fourth quadrants	(d) Nowhere						
DI	FFERENTI	AL EQUATION							
30.	What are the	e solutions of $f''(x) - 2f$	f'(x) + f(x) = 0?	[JEST-2014]					
	(a) $c_1 e^x / x$ (c) $c_1 x e^x +$	<i>C</i> ₂	(b) $c_1 x + c_2 / x$ (d) $c_1 e^x + c_2 x e^x$:					
31.	What is the	maximum number of ext	rema of the function	f(x) =					
	$P_k(x)e^{-\left(\frac{x^4}{4}+\frac{x^2}{2}\right)}$, where $x \in (-\infty, \infty)$ and $P_k(x)$ is an arbitrary polynomial of degree k? [JEST-2015]								
	(a) $k + 2$	(b) $k + 6$	(c) $k + 3$	(d) <i>k</i>					
32.	Consider the differential equation $G'(x) + kG(x) = \delta(x)$; where <i>k</i> is a constant Which of the following statements is true? [JEST-2015]								

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919870827730 website:- www. www.careerspectra.in (a) Both G(x) and G'(x) are continuous at x = 0.

(b) G(x) is continuous at x = 0 but G'(x) is not.

(c) G(x) is discontinuous at x = 0.

(d) The continuity properties of G(x) and G'(x) at x = 0 depends on the value of k.

OTHER QUESTION

33. If [x] denotes the greatest integer not exceeding x, then $\int_0^\infty [x]e^{-x}dx$. [JEST-2012]

(a)
$$\frac{1}{e^{-1}}$$
 (b) 1 (c) $\frac{e^{-1}}{e}$ (d) $\frac{1}{e^{2}-1}$

34. As $x \rightarrow 1$, the infinite series $x - \frac{1}{3}x^3 + \frac{1}{5}x^5 - \frac{1}{7}x^7 + \cdots$ [JEST-2012] (a) Diverges (b) Converges to unity (c) Converges to $\frac{\pi}{4}$ (d) None of the above

35. What is the value of the following series? $\left(1 + \frac{1}{2!} + \frac{1}{4!} + \cdots\right)^2 - \left(1 + \frac{1}{3!} + \frac{1}{5!} + \cdots\right)^2$. (a) 0 (b) *e* (c) e^2 (d) 1

36.An unbiased die is cast twice. The probability that the positive
- smaller) between the two numbers is 2 is.difference (bigger
[JEST-2012]
(d) 1/3(a) 1/9(b) 2/9(c) 1/6(d) 1/3

37. A box contains 100 coins out of which 99 are fair coins and 1 is a double-headed coin. Suppose you choose a coin at random and toss it 3 times. It turns out that the results of all 3 tosses are heads. What is the probability that the coin you have drawn is the double headed one? [JEST-2013]

 (a) 0.99
 (b) 0.925
 (c) 0.75
 (d) 0.01

38. There are on average 20 buses per hour at a point, but at random times. The probability that there are no buses in five minutes is closest to. [JEST-2013]
(a) 0.07 (b) 0.60 (c) 0.36 (d) 0.19

39. Two drunks start out together at the origin, each having equal probability of making a step simultaneously to the left or right along the x axis. The probability that they meet after n steps is. [JEST-2013]

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919870827730 website:- www.www.careerspectra.in

	Career Spectra							
	(a) $\frac{1}{4^n} \frac{2n!}{n!^2}$	(b) $\frac{1}{2^n} \frac{2n!}{n!^2}$	(c) $\frac{1}{2^n} 2n!$	(d) $\frac{1}{4^n} n!$				
40.	What is the valu	ue of the following se	series? $\left(1 - \frac{1}{2!} + \frac{1}{4!}\right)^2 + \left(1 - \frac{1}{3!} + \frac{1}{5!}\right)^2$.					
	(a) 0	(b) <i>e</i>	(c) e^2	(d) 1				
41.	If the distribution mean value of x	on function of x is $f(x)$ is.	$(x) = xe^{-x/\lambda}$ over the	interval $0 < x < \infty$, the [JEST-2013]				
	(a) λ	(b) 2 λ	(c) $\frac{\lambda}{2}$	(d) 0				
42.	The value of $\int_{0.2}^{2.2} xe^x dx$ by using the one-segment trapezoidal rule is closed to.							
	(a) 11.672	(b) 11.807	(c) 20.099	[<u>JEST-2014]</u> (d) 24.119				
43.	If two ideal dice	e are rolled once, wha	t is the probability of	getting at least one				
	(a) 11/36	(b) 1/36	(c) 10/36	(d) 5/36				
44.	The Bernoulli p	olynominals B _n (s) are	e defined by, $\frac{xe^{xs}}{e^{x}-1} = \sum_{k=1}^{\infty}$	$\sum B_n(s) \frac{x^n}{n!}$. Which one				
	of the following relations is true? (a) $\frac{xe^{x(1-s)}}{e^{x}-1} = \sum B_n(s) \frac{x^n}{(n+1)!}$ (b) $\frac{xe^{x(1-s)}}{e^{x}-1} = \sum B_n(s)(-1)^n \frac{x^n}{(n+1)!}$							
	(c) $\frac{e^{x-1}}{e^{x-1}} = \sum$	$B_n(-s)(-1)^n \frac{x^n}{n!}$	(d) $\frac{e^{x-1}}{e^{x-1}} = \Sigma$	$B_n(s)(-1)^n \frac{x^n}{n!}$				
45.	The sum $\sum_{m=1}^{99}$	$\frac{1}{\sqrt{m+1}+\sqrt{m}}$ is equal to.	SPECTRA	[JEST-2015]				
	(a) 9	(b) √ 99 − 1	$(c) \frac{1}{(\sqrt{99}-1)}$	(d) 11				
46.	The mean value of random variable x with probability density $p(x) = \int_{1}^{1} (x^2 + ux)^2 dx$							
	$\frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{\sigma}\right]$	$\frac{1}{2\sigma^2}$ is: (b) $\frac{\mu}{2\sigma^2}$	$(c)\frac{-\mu}{c}$	[JEST-2016] (d) σ				
47	The sum of the	infinite series $1 - \frac{1}{2}$	$\frac{1}{2} = \frac{1}{2} \pm \dots$ is	[IFST 2016]				
	(a) 2π	(b) π	$5 \frac{7}{(c)} \frac{\pi}{2}$	(d) $\frac{\pi}{4}$				
48.	A semicircular	piece of paper is fold	ed to make a cone wit	h the centre of the				
	semicircle as th	e apex. The half-angl	e of the resulting cone	e would be: [JEST-2016]				
	14. R	AIPUR ROAD, NEAR SI	URVEY CHOWK, DEHR	ADUN				

CONTACT:- +919045460409, +919870827730 website:- www. www.careerspectra.in

Career Spectra

(a)
$$90^{0}$$
 (b) 60^{0} (c) 45^{0} (d) 30^{0}

49. Suppose that we toss two fair coins hundred times each. The probability that the same number of heads occur for both coins at the end of the experiment is:

(a) $\left(\frac{1}{4}\right)^{100} \sum_{n=0}^{100} {100 \choose n}$ (b) $2 \left(\frac{1}{4}\right)^{100} \sum_{n=0}^{100} {100 \choose n}^2$ (c) $\frac{1}{2} \left(\frac{1}{4}\right)^{100} \sum_{n=0}^{100} {100 \choose n}^2$ (d) $\left(\frac{1}{4}\right)^{100} \sum_{n=0}^{100} {100 \choose n}^2$

50. The integral $I = \int_{1}^{\infty} \frac{\sqrt{x-1}}{(1+x)^2} dx$ is. (a) $\frac{\pi}{\sqrt{2}}$ (b) $\frac{\pi}{2\sqrt{2}}$

51. An electronic circuit with 10000 components performs its intended function success fully with a probability 0.99 if there are no faulty components in the circuit. The probability that there are faulty components is 0.05. if there are faulty components, the circuit perform successfully with a probability 0.3. The probability that the circuit performs successfully is $\frac{x}{10000}$. What is x?.

(c) $\frac{\sqrt{\pi}}{2}$

```
[JEST 2018]
```

[JEST 2017]

(d) $\sqrt{\frac{\pi}{2}}$

52. If an abelian group is constructed with two distinct elements a and b such that $a^2 = b^2 = I$, where I is the group identity. What is the order order of the smallest abelian group containing a, b and I?

54. A person plans to go from town *A* to town *B* by taking either the route (R1+R2) with Probability (1/2) or the route (R1+R3) with probability (1/2) (see figure). Further, there is a probability (1/3) that *R*1 is blocked, a (1/3) that *R*2 is blocked, and a probability (1/3) that *R*3 is blocked. What is the probability that he/she would reach town *B*?

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919870827730 website:- www.www.careerspectra.in

Page | 8

(a) $\frac{8}{9}$ (b) $\frac{1}{3}$ (c) $\frac{4}{9}$ (d) $\frac{2}{3}$

55. Consider a function $f(x) = P_k(x)e^{-(x^4+2x^2)}$ in the domain $x \in (-\infty, \infty)$, where P_k is any polynomial of degree k. What is the maximum possible number of extrema of the function? [JEST 2019] (a) k + 3 (b) k - 3 (c) k + 2 (d) k +1

56. The Euler polynomials are defined by $\frac{2e^{xs}}{e^{x+1}} = \sum_{n=0}^{\infty} E_n(s) \frac{x^n}{n!}$ What is the value of $E_5(2) + E_5(3)$? [JEST 2019]

ANSWER KEY

1.	D	2.	В	3.	A	4.	С	5.	В	6.	А
7.	В	8.	D	9.	В	10.	D	11.	А	12.	В
13.	60	14.	В	15.	D	16.	D	17.	В	18.	D
19.	D	20.	В	21.	С	22.	В	23.	А	24.	D
25.	С	26.	С	27.	*	28.	А	29.	С	30.	D
31.	С	32.	С	33.	Α	34.	С	35.	D	36.	В
37.	С	38.	D	39.	Α	40.	D	41.	В	42.	С
43.	А	44.	D	45.	Α	46.	А	47.	D	48.	D
49.	D	50.	В	51.	9555	52.	4	53.	В	54.	С
55.	А	56.	64								

14, RAIPUR ROAD, NEAR SURVEY CHOWK, DEHRADUN CONTACT:- +919045460409, +919870827730 website:- www.www.careerspectra.in

Page | 9